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Abstract

INTRODUCTION: Recently, an increasing number of tau tracers have become avail-

able. There is a need to standardize quantitative tau measures across tracers,

supporting auniversal scale.Wedeveloped several cortical taumasks andapplied them

to generate a tau imaging universal scale.

METHOD:One thousand forty-five participants underwent tau scans with either 18F-

flortaucipir, 18F-MK6240, 18F-PI2620, 18F-PM-PBB3, 18F-GTP1, or 18F-RO948. The

universal mask was generated from cognitively unimpaired amyloid beta (Aβ)− sub-

jects and Alzheimer’s disease (AD) patients with Aβ+. Four additional regional cortical
masks were definedwithin the constraints of the universal mask. A universal scale, the

CenTauRz, was constructed.
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ADNI investigators can be found in the

Appendix, and at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf

RESULTS:None of the regions known to display off-target signal were included in the

masks. The CenTauRz allows robust discrimination between low and high levels of tau

deposits.

DISCUSSION: We constructed several tau-specific cortical masks for the AD contin-

uum and a universal standard scale designed to capture the location and degree of

abnormality that canbe applied across tracers and across centers. Themasks are freely

available at https://www.gaain.org/centaur-project.

1 BACKGROUND

Tau positron emission tomography (PET) imaging is the most recent

addition to the arsenal of tools for the in vivo assessment of neurode-

generative proteinopathies. Prior to this development, the presence

and extent of aggregated tau in the brain could only be characterized

using post mortem examination.1 Despite the challenges inherent to

imaging tau pathology,which include its intracellular location; the pres-

ence of multiple human tau isoforms (three repeat [3R], four repeat

[4R]) andmorphologies (paired helical filament [PHF], straight filament

[SF]); numerouspost-translationalmodifications (e.g., phosphorylation,

truncation, nitration); and, in the case of Alzheimer’s disease (AD),

lower concentrations than amyloid beta (Αβ) in colocalizing tau and

Aβ deposits (for review see Villemagne et al.2 andMathis et al.3), there

has been a tremendous amount of progress in the last few years, with

several selective tau tracers identified and increasingly used for human

imaging studies. These tracers have been shown to be largely specific

for themixed 3R/4RPHF tau pathology characteristic of AD andDown

syndrome and have helped further our understanding of tauopathies

as well as the relationships among Aβ, tau, neurodegeneration, and
cognitive decline in AD.4–11

In addition to the idiosyncratic characteristics of tau aggregates,

and their asymmetric and heterogeneous brain distribution, a major

obstacle to the widespread implementation of tau imaging in ther-

apeutic trials or comparing the findings of investigational imaging

studies across cohorts and institutions is that tau tracers differ in their

molecular structures and display a range of tau binding affinities, in

vivo kinetics, and degree of non-specific binding, as well as distinct

regional patterns of “off-target” and non-specific binding. Such differ-

ences lead to disparities in PET-derived standardized uptake value

ratio (SUVR) measurements between tracers, as highlighted by sev-

eral head-to-head studies comparing different tau tracers.12,13 It is

also important to note that most of these tau tracers do not reach

apparent steady state in regions with high tau pathology during the

scanning period, and while the use of semi-quantitative estimates such

as SUVR was adopted early in the implementation of these tracers as

a compromise to make PET imaging studies less burdensome to clini-

cal populations, a priori kinetic modeling studies of tau tracers in early

development stages may have led to further optimization of scanning

protocols to be less biased to tau signal.14–17 When added to the use

of diverse quantitative approaches and different regions of interest,

these methodological differences conspire to decrease reproducibil-

ity and pose a challenge when trying to compare tau outcomes across

cohorts or in therapeutic trials that use different tau tracers. A further

obstacle within the tau PET field is the definition of a reliable, consis-

tent, and reproducible threshold of abnormality across tracers. One of

the issues relates to the actual utility of a cut-off given the continuous

nature of Aβ or tau deposition.18,19 While thresholds are arbitrary, to

adopt one, it needs to be shown that it is relevant and accurate from a

diagnostic and/or prognostic point of view.20,21 In essence, biomarker

thresholds should be adopted for a specific purpose that is directly

related to the clinical question under scrutiny. From a clinical perspec-

tive, a visual binary (positive/negative) status will help separate those

subjects with a significant aggregated protein burden in the brain that

is likely to explain the clinical syndrome from those with a low patho-

logic burden that is likely to be clinically insignificant. Similar dilemmas

arise in research settings.

In response to similar challenges faced earlier with AβPET,22 a stan-
dardization method was developed whereby Aβ PET outcome data

acquired using different Aβ tracers and methods was normalized to a

100-point scale, the units of which were termed “Centiloids,” using a

linear scaling procedure.22 While the method transforms all Aβ trac-
ers’ semiquantitative results into a single universal scale and because

sampling was only based on 11C-Pittsburgh compound B, the idiosyn-

cratic binding properties of these Aβ tracers remain unaccounted for

so they might be more or less sensitive or accurate for making a state-

ment about a similar index of cerebral Aβ burden. Furthermore, while

the pattern of Aβ deposition throughout the brain is relatively uni-

form across subjects, and thus a single universal target mask provides

reproducible statements of Aβ in the brain, the deposition of tau, espe-
cially at the early stages, tends to be more heterogeneous,23 requiring

amore regional approach to the sampling of target areas.

In the present study, we aimed to standardize tau PET results by

establishing the location and amount of abnormality of tau aggregates

in the brain, and expressing them in a universal standard scale, the

unit of which are termed “CenTauR”—using tau PET data from the

six most commonly used tracers (18F-flortaucipir, 18F-MK6240, 18F-

PI2620, 18F-PM-PBB3, 18F-RO948, and 18F-GTP1) and an approach

similar to the one used in the Centiloid project.

2 METHODS

This study involved 1045 participants from various cohorts (Aus-

tralian Imaging Biomarkers and Lifestyle study [AIBL], Alzheimer’s

Disease Neuroimaging Initiative [ADNI], Biomarkers for Identifying
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Neurodegenerative Disorders Early and Reliably [BioFINDER]), aca-

demic institutions (National Institutes for Quantum and Radiological

Science and Technology, Chiba), as well as industry (Life Molecular

Imaging, Genentech). All participants underwent a tau PET scan (300

MK6240, 503FTP, 47PI2620, 57R0948, 87GTP1, 51PM-PBB3) and a

structural magnetic resonance imaging (MRI; for complete details, see

Method S1 in supporting information). All participants were assigned

a diagnosis of cognitively unimpaired (CU), mild cognitive impairment

(MCI), or AD dementia or other dementia (OD) by the entity provid-

ing the data. Criteria for assigning participant diagnosis can be found

elsewhere.15,24–27 Aβ status (Aβ+ or Aβ−) was defined using either Aβ
PET or the Aβ42/Aβ40 ratio in cerebrospinal fluid (CSF). Analysis of

variancewasused todetermine any significant demographic difference

between cohorts.

2.1 Image processing

Tau scanswere spatially normalizedusingprincipal component analysis

(PCA) based on Computational Analysis of PET by AIBL (CapAIBL),28

which is a publicly available cloud-based platform in which PET images

are spatially normalized to a standard template using an adaptive atlas

approach (https://capaibl-milxcloud.csiro.au), and Statistical Paramet-

ric Mapping (SPM, version 8) using the standard pipeline for the

Centiloid method (CL-SPM) described in Klunk et al.22 For more

detailed information on theCentiloid pipeline, includingMATLAB com-

mands, please refer to Method S2 in the supporting information. All

spatially normalized scanswere visually assessed to ensure proper reg-

istration, especially in the mesial temporal lobe (MTL).29 In the case

of CL-SPM, all scans that did not pass visual assessment were repro-

cessed using a different orientation matrix until they passed a visual

quality check (QC). Scans that failed visual QC three times in a row

were excluded from further analysis. In the CU group, Aβ− scans were

excluded if the presence of tau was visually detected in the cortex or

in the MTL. We defined a sub-cerebellar cortex region based on the

Centiloid cerebellum cortex mask as reference region, excluding the

upper portion (slice > −37) of the cerebellum to avoid off-target bind-

ing often observed in the cerebellar vermis, and also the lower part

(slice <−47) to avoid quantification challenges such as partial volume,

low axial sensitivity, and out-of-field scatter (Figure S1 in supporting

information). The same reference region was used for the CL-SPM and

CapAIBL pipelines.

For each tracer andnormalization approach (i.e., CapAIBL,CL-SPM),

weaveragedallCUAβ−andADAβ+ scans separately, generatingmean

CU Aβ− and AD Aβ+ images. We then subtracted the CU Aβ− mean

image from the AD Aβ+ mean image to generate a difference image.

After exploring several thresholds, the resultant difference-image was

thresholded at one third of the difference in the inferior temporal

lobe. This threshold produced large and consistent volumes of inter-

est across tracers of areas of the brain with the greatest tau load.

We then constructed a “universal” tau mask from the intersection (i.e.,

spatial overlap) of the six tracer-specific masks. An MRI-derived gray

matter mask obtained from the FreeSurfer segmentation of 100 MRIs

(independent dataset) at PET resolution was then applied to the uni-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and meeting

abstracts andpresentations.While theuseof taupositron

emission tomography (PET) imaging rapidly increased in

research and in clinical trials over the past few years,

there is no standardization pipeline for the quantifica-

tion of tau imaging across tau tracers and quantification

software.

2. Interpretation:We built a global and several regional uni-

versal masks for the sampling of tau PET scans based

on the most commonly used tau PET tracers. We then

derived a universal scale across tracers, the CenTauRz, to

measure the tau signal.

3. Future directions: Standardized quantification will facil-

itate the derivation of universal cut-off values, merging

of large cohorts, and comparison of longitudinal changes

across tracers and cohorts both in clinical studies and

therapeutic trials.

versal mask to only sample cortical regions. The resulting mask was

then mirrored and fused to remove the hemispherical asymmetry of

tau pathology. Last, an additional four subregions were defined within

the constraints of the universal mask: Mesial Temporal, Meta Tempo-

ral, Temporo-Parietal, and Frontal ROIs (regions of interest;Method S3

in supporting information). Agreement between masks was assessed

using the Dice index, which is ameasure of the similarity between vari-

ous images. Finally, for each tracer, themean and standard deviation of

the CU Aβ− subjects were used to generate CenTauR z scores in each

of the five ROIs, similar to what was previously proposed by Vemuri

et al.30

2.2 Visual topographical subtype classification

Seventy-eight 18F -MK6240 AD Aβ+ scans from the AIBL cohort

were visually rated by two readers (C.C.R. and N.K.), blind to partici-

pant characteristics, resulting in consensus visual reads, as previously

described.31 Briefly, scans were rated as (1) tau negative (no tracer

retention or minimal [unilateral or bilateral]) entorhinal cortex reten-

tion, (2) limbic predominant (pronounced tracer retention in the MTL

with no cortical retention), (iii) hippocampal sparing (cortical tau tracer

retention with no or minimal MTL signal), or (4) typical (MTL and

cortical tracer retention).

3 RESULTS

Participant characteristics by tau PET tracer are summarized in Table

S1 in supporting information. Overall, participants from the 18F-GTP1
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F IGURE 1 CenTauRmask overlaid on amagnetic resonance imaging template.

and 18F-PM-PBB3 cohorts were significantly younger compared to

participants from the other cohorts. Compared to the MCI and AD

dementia groups, CU Aβ+ participants were significantly older (F-stat

= 3.9, P< 0.002) and had fewermales (F-stat= 3, P< 0.005). No signif-

icant differences in age, sex, Mini-Mental State Examination or Clinical

Dementia Rating were found between the AD Aβ+ patients from the

different cohorts (F-stat= 1, P= 0.4).

3.1 Tau mask sampling

Twenty-three scans (eight 18F-RO948, one 18F-GTP1, five 18F-PI2620,

one 18F-FTP, eight 18F-PM-PBB3) did not pass visual QC using the CL-

SPMpipeline or did not have anMRI of sufficient qualitywhile only one

scan did not pass visual QC using both CapAIBL andCL-SPM. A further

six CUAβ–were visually excluded due to the presence of tracer uptake
in theMTL. These 29 scans were excluded from further analysis.

CL-SPM tracer-specific masks showed a reasonable overlap (Figure

S2 in supporting information), with a global Dice score of 0.58 (95%

confidence interval [CI], 0.52–0.61) and a Dice score in the corti-

cal mask of 0.61 (95% CI, 0.60–0.69). The mean Dice score obtained

when comparing paired tracer-specific masks was 0.85 (Table S2 in

supporting information). All masks included themesial temporal, meta-

temporal, posterior cingulate/precuneus, and subfrontal regions. The

CenTauRmask overlaid on anMRI template is shown in Figure 1, while

the subregionmasks are shown in Figure S3 in supporting information.

None of the knownoff-target signal regionswere discernible in the five

masks (Figure S4 in supporting information).

Both quantitative pipelines provided very similar tau masks, with a

Dice score of 0.75 between universal masks generated using CapAIBL

andCL-SPM. Part of this differencewas due to the normalized space of

CapAIBL, which is different from the Montreal Neurological Institute

space, the CL-SPM mask required resampling to be compared to the

CapAIBL mask. In the remainder of this paper, we only use the masks

defined using the CL-SPM pipeline.

3.2 CenTauRz quantification

Table 1 provides the regional equations to convert CL-SPM–based

SUVR values (Material S2 in supporting information) into CenTauRz

(CTRz) for each of the six tau tracers included in the study. Figure 2 dis-

plays the box plot of theMeta Temporal CTRz for CUAβ− and ADAβ+
individuals. CTRz for the other four ROIs are presented in Figure S5 in

supporting information and CapAIBL CTRz are displayed in Figure S6

in supporting information. Using a threshold of two CTRz in the Meta

Temporal ROI, all tracers showed high discriminative accuracy for the

separation of AD Aβ+ from CU Aβ− individuals (accuracy = 0.96 [min

= 0.95−max= 1], sensitivity= 0.91 [0.78− 1], specificity= 0.97 [0.93

− 1]) with mean CTRz scores for the six different AD cohorts ranging

from 8.1 to 22 (Figure 2 and Figure S7 in supporting information). Sim-

ilar accuracies were observed using the Mesial Temporal (accuracy =

0.95 [0.90 − 1], sensitivity = 0.90 [0.83 − 1], specificity = 0.97 [0.95 −

1]) and Temporo-Parietal (accuracy= 0.94 [0.90− 1], sensitivity= 0.88

[0.76 − 1], specificity = 0.96 [0.95 − 1]) ROIs, while the accuracy for

the Frontal ROI (accuracy = 0.91 [0.81 − 1]) was somewhat lower due

to lower sensitivity (sensitivity = 0.73 [0.5 − 1]); whereas specificity

(specificity = 0.97 [0.91, 1]) was similar to that for the Meta Temporal

ROI.

Figure 3 and Figure S8 in supporting information show boxplots of

CTRz scores in the five different ROIs. The AD Aβ+ group had signifi-

cantly higher CTRz scores across ROIs compared to all other cognitive
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TABLE 1 Conversion equations from Statistical ParametricMapping standardized uptake value ratios to CenTauRz.

Tracer

Universal

mask

Mesial

temporal

Meta

temporal

Temporo

parietal Frontal

18F-RO948 13.05x–15.57 11.76x–13.08 13.16x–16.19 13.05x–15.62 12.61x–13.45

18F-FTP 13.63x–15.85 10.42x–12.11 12.95x–15.37 13.75x–15.92 11.61x–13.01

18F-MK6240 10.08x–10.06 7.28x–7.01 9.36x–10.6 9.98x–10.15 10.05x–8.91

18F-GTP1 10.67x–11.92 7.88x–8.75 9.60x–11.10 10.84x–12.27 9.41x–9.71

18F-PM-PBB3 16.73x–15.34 7.97x–7.83 11.78x–11.21 16.16x–14.68 15.7x–13.18

18F-PI2620 8.45x–9.61 6.03x–6.83 7.78x–9.33 8.21x–9.52 9.07x–9.01

F IGURE 2 Comparisons of the CTRz in theMeta Temporal ROI between CUAβ– and ADAβ+ for the six tau tracers. The blue dashed line
corresponds to two CTRz. Aβ, amyloid beta; AD, Alzheimer’s disease; Aβ, amyloid beta; CTRz, CenTauRz; CU, cognitively unimpaired; ROI, region
of interest.

groups (Welch’s T > 7.6). CU Aβ+ had significantly higher CTRz com-

pared to CU Aβ− and MCI Aβ− in all regions with the strongest effect

size in the Mesial Temporal ROI (Welch’s T > 6) and the lowest in the

Frontal ROI (Welch’sT≈3). Among theCUAβ+, 36%hadaCTRz higher

than 2 in the Mesial Temporal, 29% in the Meta Temporal, 21% in the

Temporo-Parietal, 12% in the Frontal, and 23% in the universal mask,

while these prevalences were, respectively, 77%, 63%, 58%, 41%, 60%

for the MCI Aβ+ group, and 91%, 90%, 87%, 73%, and 88% for the AD

Aβ+ and around 4% and 2.5% in all regions for the MCI Aβ− and CU

Aβ−, respectively.

3.3 CapAIBL versus CL-SPM pipeline

The equations to convert CapAIBL SUVR values into CTRz scores are

presented in Table S3 in supporting information. Converting slopes

between CapAIBL and CL-SPM were of the same rank order except

for the Temporo-Parietal and Frontal ROIs for 18F-PM-PBB3, due to

the slightly higher standard deviation of the CapAIBL SUVRs in the

CU Aβ− group. The correlation between CTRz scores from CL-SPM

and CapAIBL was 0.99 in the Meta Temporal ROI; 0.98 in the Mesial,

Temporo-Parietal, and universal ROIs; and 0.89 in the Frontal ROI

(Figure 4). Using an arbitrary threshold of 2.0 CapAIBL CTRz in the

Meta Temporal region, all tracers showed high discriminative accuracy

for the separationofADAβ+ fromCUAβ− individuals (accuracy=0.95

[0.93 − 1], sensitivity = 0.89 [0.78 − 1], specificity = 0.98 [0.96 − 1]),

with mean CTRz for the different AD cohorts ranging from 7.6 to 20.6

(Figures S6 and S9 in supporting information).

Figures S10 and S11 in supporting information display the asso-

ciation between CTRz scores and Aβ+ PET Centiloid values across

the five ROIs. As previously reported,32 individuals with a Centiloid

value below 50 and a CTRz value above 2 in the Meta Temporal or

Temporo-Parietal ROIs were rare but became increasingly more com-

mon as Centiloid values increased. Similarly, very few individuals with

a Frontal CTRz values above 2 had Centiloid values below 70. Scatter

plots showing the relationship between CapAIBL-derived CTRz scores

and Centiloids are shown in Figure S11.

Scatter plots showing CTRz scores in the Meta Temporal and

Temporo-Parietal ROIs as a function of CTRz scores in theMesial Tem-

poral for 18F-MK6240 are presented in Figure 5. Visual classifications

(i.e., tau negative, limbic predominant, hippocampal sparing, and typi-

cal) are color coded. A CTRz > 2 in theMesial Temporal ROI accurately

differentiated tau negative scans from all other classifications (accu-

racy= 0.92, sensitivity= 0.97, specificity= 0.60); applying a threshold
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6 of 12 VILLEMAGNE ET AL.

F IGURE 3 Boxplots of the ROI CTRz of all participants from all cohorts in the different ROI. The blue dashed line corresponds to two CTRz.
Aβ, amyloid beta; AD, Alzheimer’s disease; CTRz, CenTauRz; CU, cognitively unimpaired;MCI, mild cognitive impairment; OD, other dementia; ROI,
region of interest.

F IGURE 4 Comparison of the CTRz generated with SPM (y-axis) andwith CapAIBL (x-axis). CapAIBL, computational analysis of positron
emission tomography by Australian Imaging, Biomarkers and Lifestyle study; CTRz, CenTauRz.
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VILLEMAGNE ET AL. 7 of 12

F IGURE 5 Scatter plots of the CTRz in theMeta Temporal and Temporo Parietal as a function of the CTRz in theMesial Temporal from the
18F-MK6240 AIBL cohort. Points are colored depending on their visual reads. The blue dashed lines correspond to two CTRz. AD, Alzheimer’s
disease; AIBL, Australian Imaging, Biomarkers and Lifestyle study; CTRz, CenTauRz.

of 2 CTRz in the Mesial Temporal and in the Meta Temporal together

slightly increased the accuracy of detecting tau negative scans (accu-

racy = 0.94, sensitivity = 1.0, specificity = 0.60). Using CTRz > 2

in Mesial Temporal ROI and <2 in the Meta Temporal ROI, yielded

an accuracy of 0.92 to detect limbic-predominant individuals. Using

CapAIBL the specificities and accuracies were slightly improved (tau

negative: accuracy = 0.95, sensitivity = 0.97, specificity = 0.80; lim-

bic predominant: accuracy= 0.92, sensitivity= 0.96, specificity= 0.57,

Figures S12–S13 in supporting information).

4 DISCUSSION

In the present work we described the CenTauRz scale, a method that

facilitates the expression of the level of abnormality of the semiquan-

titative tau PET signal at both a regional and global level. Also, the

CenTauRz scale allows, by incorporating the intrinsic “noise” of each tau

tracer into the measurement, the generation of a universal scale of tau

pathologic burden across tracers. The two pipelines used to quantify

brain PET imaging (CapAIBL andCL-SPM) generated consistent results

in quantifying tau scans in all ROIs, with high discriminative power in

distinguishing AD Aβ+ from CU Aβ− and tau negative scans from lim-

bic predominant, hippocampal sparing, and typical AD tau scans when

using a threshold of> 2 CTRz in different ROIs.

An important aspect, both for clinical interpretation and for ther-

apeutic trials, is the selection of brain regions sampled to capture

the distribution of tau, how this index of tau load changes over time,

and what CTRz level is considered high tau.33 Given the low spatial

resolution of PET, it can be counterproductive to impose a neuropatho-

logical piecemeal staging system, such as those proposed by Braak and

Braak34 or Delacourte,35 to the sampling of tau PET images.36,37 Atyp-

ical and heterogeneous presentations of tau deposits, and how they

intimately relate to the clinical phenotype,34,35 aremissed by the incre-

mentally sequential Braak staging. Applying the Braak or Delacourte

staging34,35 is further complicated by the different neuropatholog-

ical subtypes of tau deposition in AD.38 From the pathological AD

subtypes, only the typical (reported to be between 55%–75% in dif-

ferent series)39–41 completely fulfills the sequential Braak stages.

Several reports have shown that a meta-temporal region,42 or a tem-

poroparietal (including posterior cingulate) AD-signature region43,44

outperforms the Braak staging for the early detection of cortical

tau, for establishing the differential diagnosis of AD versus non-AD

neurodegenerative conditions,45 as well as for capturing longitudinal

changes in cortical tau signal. These regions seem to perform reliably

across different tau tracers and use sites and, despite these tracers

presenting different dynamic ranges, they yielded the same cut-off for

abnormality in different cohorts.46 While the use of tau imaging for dis-

ease staging is strongly recommended,47 the use of neuropathological

staging should be applied carefully, not as an a priori condition, but as

the result of the actual observed pattern of tau deposition on the PET

images. Furthermore, it has been shown that tau imaging, at least with
18F-FTP,48 can reliably detect a B3 stage (equivalent to Braak V–VI), so

attempting to classify earlierBraak stagesusing this tracer,with its high

level of non-specific binding,49 would likely yield less reliable results.

Similar issuesmayapply toother tau tracers. Suchconsiderations argue

against using current neuropathological staging approaches, especially

because it progresses from very small regions (Braak I–II) that are

susceptible to partial volume effects and easily contaminated by off-

target binding, to very large regions (Braak V–VI) that encompass

large portions of the cerebral cortex and subcortical structures, mak-

ing it impractical for implementation in clinical studies, and foremost,

in therapeutic trials. Our method is designed to capture tau levels

and distribution in the brain as well as tau progression and most of

the reported heterogeneities in tau PET studies, such as primary age-

related tauopathy (PART) and proposed subtypes and heterogeneity in

the patterns of tau distribution.31,50 Similar methods can be used to
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select a brain region as reference to scale the tissue ratios. Attempts

to define a universal cerebellar tau mask are already underway,51 but

will require testing with all tau tracers to assess whether it improves

the CTRz accuracy.

There are several limitations of the present study. First, similar to

the Centiloid method, the mask and scales for some of the tau tracers

included here were generated from a limited number of available par-

ticipant datasets. Second, the masks and scales were generated with

elderly CU Aβ− controls and AD Aβ+ patients. A scale generated with

young adult controls devoid of cortical tau pathology might hypothet-

ically prove more sensitive to low levels of tau pathology. That said,

ongoing studieswith 18F-MK6240 and 18F-FTP comparing young adult

controlswith elderly controls showno significant differences in the tau

signal52 between young and elderly controls. Third, the performance of

themasks and scales were not tested in longitudinal studies and there-

fore we cannot assess the reproducibility of the method. However, the

CenTauR framework is flexible in several key aspects: (1) while the

results presented here are the average of left and right hemispheres,

data can be expressed unilaterally to characterize potential asymme-

tries in tau deposition; (2) to capture early cortical tau deposition in the

inferior and middle temporal gyri, the MTL CTRz could be subtracted

from the meta temporal CTRz; (3) similar to what was proposed with

the Centiloid method, it allows to resample a CTRz parametric image,

either with a different atlas template, using SPM or with a different

image analysis pipeline or software, once all voxels are transformed

intoCTRz parametric images using one of the provided equations (for a

global transformation, we suggest using the temporoparietal equation

[Figure S13]); and (4) it provides a comprehensive scheme to facilitate

and standardize head-to-head comparisons between tau tracers.53,54

Moreover, and in contrast to the Centiloid approach, by incorporat-

ing the tracer-specific “noise” into the measurement, the CenTauRz

approach provides a more robust and meaningful underpinning for

head-to-head comparisons between these tracers. Last, the modular

approach also allows the examination of certain brain regions sepa-

rately given that they behave differently over time, with for example

the MTL accumulating tau early but also plateauing early, or the tem-

poroparietal that seems to be the most sensitive region to capture tau

accumulation in the brain, and likely large enough to provide robust

statements of changes in tau burden in a clinical trial.55,56

In conclusion, we constructed several universal tau PET–specific

cortical masks for the AD continuum based on all the commonly used

tau tracers, and a universal standard scale, the CenTauRz, designed to

capture the location and degree of abnormality of tau pathology that

can be applied across tracers and across centers. While the CenTauR

scheme does not answer all questions about measuring tau deposits,

it establishes a robust and reproducible standard framework from

which to build upon, and to be implemented in the clinic and applied

in therapeutic trials.
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