
Australia’s National 
Science Agency

AI 
trends for 
healthcare

March 2024



Citation and authorship

CSIRO (2023) AI trends for healthcare. 
CSIRO, Herston. This report was authored by 
David Hansen, Denis Bauer, John Grimes, David Silvera, 
Liesel Higgins, Naomi Stekelenburg, Pierrick Bourgeat, 
Priya Ramarao-Milne, Hang (Hollie) Min, Rosita Shishegar, 
Teresa Wozniak, David Ireland and Filip Rusak.

Copyright 

© Commonwealth Scientific and Industrial Research 
Organisation 2023. To the extent permitted by law, all rights 
are reserved and no part of this publication covered by 
copyright may be reproduced or copied in any form or by 
any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this 
publication comprises general statements based on 
scientific research. The reader is advised and needs to be 
aware that such information may be incomplete or unable 
to be used in any specific situation. No reliance or actions 
must therefore be made on that information without 
seeking prior expert professional, scientific and technical 
advice. To the extent permitted by law, CSIRO, the project 
Supporters (including its employees and consultants) 
excludes all liability to any person for any consequences, 
including but not limited to all losses, damages, costs, 
expenses and any other compensation, arising directly 
or indirectly from using this publication (in part or in 
whole) and any information or material contained in it. 
CSIRO is committed to providing web accessible content 
wherever possible. If you are having difficulties with 
accessing this document please contact csiro.au/contact

AEHRC

The Australian e-Health Research Centre (AEHRC) is the 
largest digital health research program in Australia with 
over 150 scientists and engineers and a further 50 higher 
degree research students. As CSIRO’s national digital health 
research program, the AEHRC has offices across Brisbane, 
Sydney, Melbourne, Canberra, Adelaide, and Perth. AEHRC 
is unique world-wide in covering the full value chain in 
health care, from basic science all the way to delivering 
technology and services into the healthcare system.

Acknowledgements

CSIRO acknowledges the Traditional Owners of the 
lands that we live and work on across Australia and 
pays its respect to Elders past and present. CSIRO 
recognises that Aboriginal and Torres Strait Islander 
peoples have made and will continue to make 
extraordinary contributions to all aspects of Australian 
life including culture, economy, and science. 

The project team is grateful for the time and input 
of the stakeholders from industry, government and 
academia who were consulted throughout this project. 
The team is particularly thankful to Dana Bradford, 
David Hansen and Bevan Koopman who were the 
authors of the first AI Report (2019), from which parts 
of the ‘Primer’ section of this report are taken. 

Special thank you to our colleagues at CSIRO 
who provided invaluable contributions to 
the report including draft reviews. 



Introduction..................................................................................................................................................2

Use of AI and ML by AEHRC Research Groups  ....................................................................... 4

Breaking down AI basics  ..................................................................................................................... 8

Safe and Responsible AI ......................................................................................................................18

Challenges and opportunities ..........................................................................................................22

Case studies ..............................................................................................................................................34

Definitions ................................................................................................................................................. 44

Acronyms ...................................................................................................................................................45

Contents

1



2 AI trends for healthcare | March 2024

In 2023 artificial intelligence (AI) technologies have started 
to move into mainstream use. Tools such as ChatGPT have 
provided a way that almost everyone can start to interact 
with AI technologies – and many people are finding 
new and novel ways of using the technology. In many 
ways this stage of the use of AI in society mirrors the 
arrival of Google in the late 1990s, which really marked 
the beginning of widespread use of the internet. 

AI use across many industries is not new – and that 
includes healthcare. However, so far, such use has 
been limited and specific. Three factors have led to the 
inevitability of more broad use of AI in everyday tasks: 

• the escalation in the amount of digital data

• the surge in compute power through cloud computing 

• availability of AI tools that allow the 
reimagining of task management.

We originally published our AI in Health Report in 2020. 
One of the key motivations for the report was to 
detail how we were mobilising AI in our health and 
medical applications. Across 34 different case studies 
we detailed the many different AI techniques we 
used to solve health and medical challenges. 

Over the past three years our use of AI has only 
increased, and the emergence of new techniques has 
been incorporated into many of our technologies.

A key difference between the use of AI in healthcare and 
the use of AI in other industries is where AI provides 
decision making for diagnosis, prevention, prediction, 
prognosis, monitoring or treatment. In these cases, the AI 
is considered a medical device and is currently regulated as 
such – ‘software as a medical device (SaMD)’. This feeds into 
a bigger discussion of the use of AI across healthcare, for 
clinical and non-clinical purposes, and ensuring Australia is 
ready for its use. The healthcare consequences of the rise 
of generative models are rapidly unfolding and the national 
discussion about how to regulate AI is gaining pace.

Introduction

CSIRO’s Australian e-Health 
Research Centre (AEHRC) plays a 
pivotal role in creating, analysing, 
and implementing Australia’s 
digital health infrastructure.
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Australia is undoubtedly set to benefit enormously from 
AI in healthcare – we are already seeing AI algorithms 
performing tasks like chatbots and image processing. 
However, we also need to ensure our nation’s preparedness 
for the unintended consequences of AI in the health sector. 

We have identified four trends in digital health – each being 
driven by the increasing digitisation of society and the 
increased willingness of doctors, researchers, and patients 
to interact using digital tools. All support the use of AI and 
machine learning in everyday life, including healthcare. 

• Interoperability: ensuring that data can be safely 
exchanged between systems to support patient 
care and increased system performance. 

• Cloud: cloud computing is increasing being used by 
health systems for secure data storage and enabling data 
exchange as well as for high performance computing. 

• Apps and personalisation: the availability of 
patient data is supporting a more personalised 
approach to providing healthcare.

• Data analytics as a service: as well as the availability of 
data on cloud computing is enabling algorithms to be 
‘brought to the data’ rather than the data being shared. 

To fully harness AI and machine learning (ML) we need not 
to just let it happen, but rather plan for its introduction 
into healthcare. This means we will be able to benefit 
properly from AI by ensuring the frameworks are firmly 
in place for ethical implementation and that the safety, 
quality and monitoring guidelines are established as we 
strive to create newer and better AI based digital tools.

Rather than an update on our 2020 report, this report 
provides an update on specific areas of the use of AI 
across the AEHRC and then provides a deeper treatment 
of how we use AI through seven (7) case studies. As such 
this report is an adjunct to our 2020 report rather than a 
replacement. We trust that it provides valuable information 
to the reader and prepares clinicians and consumers alike 
for the next phase of the digital health transformation. 

Australia’s largest 
digital health research program

Est. 

2003

Full health and 
biomedical informatics 
research program

>150 
scientists and 
engineers 

50  
higher degree 
research students

David Hansen 
CEO and Research Director, 
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Research Centre
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Use of AI and 
ML by AEHRC 
Research Groups 
AEHRC’s 150 scientists and engineers and 
over 50 research students work across five 
research groups. The groups have each 
developed multiple platform technologies 
and digital health solutions that enable them 
to work together and with stakeholders 
and collaborators to tackle the key 
challenges of contemporary healthcare. 

1
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Health System 
Analytics Group 

The Health Systems Analytics group develops AI and ML based software tools 
to increase health system productivity, improve patient safety, and deliver 
higher quality care. The software tools optimise patient, clinician, and resource 
level flows, and simultaneously provide intelligent decision support. 

Health Data 
Semantics and 
Interoperability 
Group 

The Health Data Semantics and Interoperability group improves patient 
outcomes and health system performance and productivity through 
data collected in EMRs and other clinical information systems.

The group works closely with two key international standards, 
SNOMED CT – the international standard clinical terminology – and 
HL7’s FHIR® to improve interoperability across digital health systems. 
The group also uses natural language processing to process medical 
narratives such as pathology reports or medical literature to support 
interoperability, clinical decision making and clinical research. 

Transformational 
Bioinformatics 
Group 

The Transformational Bioinformatics group are world leaders 
in cloud-native genomics research, using the latest in ML and 
bioinformatics to drive innovation in the use of genomics in the 
health system. The group applies AI and ML across two main 
genomics disciplines – genomics insights and genome therapeutics. 

Biomedical 
Informatics 
Group 

The Biomedical Informatics group develops innovative medical technologies 
for the discovery and communication of meaningful patterns in biomedical 
data. Especially valuable in areas rich with recorded information 
such as medical images or genomics, these technologies rely on the 
simultaneous application of statistics, computer programming, and applied 
mathematics. The group also develops techniques to report and visualise 
complex biomedical information for clinical diagnosis and screening 
and to communicate insights to clinicians and clinical researchers. 

Digital 
Therapeutics 
and Care Group 

The Digital Therapeutics and Care group takes advantage of emerging 
sensor systems, digital technologies, data access, and analytics to 
improve healthcare for people who are chronically ill , older people 
and those living with disability. The multi-disciplinary group combines 
expertise in clinical research, tele-medicine systems and AI for medical 
image and data analysis to develop cutting-edge digital platforms. 
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A big win for AEHRC at MEDINFO202

This year at one of the world’s 
biggest digital health conferences, 
AEHRC’s Aida Brankovic 
received a special accolade 
for her research, which she 
presented at the conference. 

The MedInfo 2023 Best Paper Award was presented to Aida, 
Wenjie Huang, David Cook, Sankalp Khanna, and Konstanty 
Bialkowski for their paper ‘Elucidating Discrepancy in 
Explanations of Predictive Models Developed Using EMR’. 
The award recognised the researchers’ paper as the highest 
ranking of the 281 papers presented at the conference.

Aida’s most recent project has shown the potential benefits 
of using an AI algorithm to improve engagement and 
health outcomes from digital health programs. The study, 
published in The Journal of Medical Internet Research, used 
a CSIRO-developed algorithm that uses AI to predict when 
a person will drop out of an online weight loss program.

Award winner Aida Brankovic contemplates her bright future in AI.

https://www.jmir.org/2023/1/e43633/
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2

Breaking down 
AI basics 
Despite its prevalence, the term AI is 
still often misused and misunderstood. 
That’s why before we get into unfolding 
some of the future directions and 
trends for AI in healthcare, a short 
guide to some of the vocabulary and 
concepts of AI may be beneficial. 

Given the omnipotence of AI in the 
healthcare sector, AI literacy is an 
increasingly essential part of the clinician, 
researcher, and industry partner toolkits.
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Scientific domains of AI
AI techniques can be described across various components 
or scientific domains. In this report we focus on the four 
different domains highlighted in the figure below.

Imaging and vision

This domain harnesses the power of images and 
videos for insight into the cause and impact of medical 
conditions. Computer vision and image processing 
are two areas that have been transformed by new AI 
methods, particularly deep learning-based methods. 

Deep learning allows us to ‘train’ a machine to ‘read’ 
an image and in some instances to produce its own. 
Machine created medical imagery can act as a baseline for 
measurements when no other baselines are available.

Domains of artificial intelligence techniques.

Predictive analytics and data-driven intelligence 

Data often exists in very large sets, often too big to be 
analysed by humans. Predictive analytics and data driven 
intelligence use the compute power of machines to extract 
insights from existing data. In this field, the intent is for 
insights to be bottom-up. This means trends are identified 
from low-level data. The advantage of this is a hypothesis-
free, unbiased examination of the data to identify 
underlying patterns. An example is CSIRO’s VariantSpark 
tool, which processes millions of genetic variables 
and extracts both linear and non-linear information to 
identify variables that explain complex phenotypes.

Knowledge representation and reasoning 

Computers can help humans infer knowledge by solving 
complex tasks. Before this can happen, humans need to 
represent or classify information about our world in a 
form that can be read by a computer system. In healthcare, 
this is typically about representing medical concepts 
(such as diseases) and their properties and relationships 
in a machine readable and understandable form. 

In many instances, solving the knowledge representation 
problem is the pivotal challenge. Once the data is 
represented in the right form, the problems become 
‘tractable’. That is, they’re able to be processed using 
compute power in an appropriate timescale.

Medical image captioning lays the groundwork for 
multimodal medical image analysis tools that can assist 
with clinical documentation. It has the potential to 
lead to medical imaging tools that can maintain and 
improve the consistency, quality, and efficiency of 
clinical reporting, produce a rich textual description 
from medical images, provide a fast, inexpensive 
second reader, and help reduce teaching time.

Human language understanding

One of the main forms of data from humans comes 
as language – or ‘natural language’. Although in 
medical settings we aim to standardise data and 
make it machine readable, the AI we use needs 
to be adept at extracting meaning, searching, 
summarising, and classifying human language. 

Developing AI able to do this is one of the key objectives 
of research in human language understanding.

In the same way that AI is categorised in terms of its 
objectives or domains, it can also be categorised in terms 
of its technologies, which generally falls in one of the two 
contrasting approaches – symbolic and statistical. Both 
paradigms play an equally important role, especially for 
AI solutions developed for domains such as healthcare.

Predictive analytics and 
data driven intelligence

Knowledge representation 
and reasoning

Imaging and vision

Human language  
understanding

Artificial 
intelligence 

and machine 
learning in 

health
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AEHRC post-doc wins international imaging competition

Dr Aaron Nicolson, winner of the ImageCLEF competition 2023.

Interpreting and summarising 
information in medical images is a 
time-consuming task and a significant 
resource burden on the health system. 

Recently, a post-doc in AEHRC’s medical imaging analysis 
team, Aaron Nicolson, won an international ImageCLEF 
award for his medical imaging captioning work, where 
he developed the groundwork for a multi-modal image 
analysis tool that can assist with clinical documentation. 

Medical imaging tools like this will, once approved 
and deployed, maintain and improve the consistency, 
quality, & efficiency of clinical reporting, produce a rich 
textual description from medical images, provide a fast & 
inexpensive second reader, and help reduce teaching time. 

What was the competition about? 
imageclef.org/2023/medical/caption

ImageCLEFmedical is an international competition focussed 
on the development of machine learning methods for 
several important computer aided diagnostic tasks. 
One such task is automatic medical image captioning, 
where participants are tasked with generating a synthetic 
description of a given medical image, where the image 
could be one of many modalities, e.g., radiography, 
ultrasonography, computed tomography (CT), magnetic 
resonance imaging (MRI), etc. The generated captions 
were evaluated using several automatic metrics.

BERTScore. Team CSIRO ranked first based on the primary metric (BERTScore), with a score of
0.643. Team CSIRO also attained the highest CLIPScore, the third highest ROUGE, BLEURT,
and CIDEr scores, the fourth highest METEOR score, and the sixth highest BLEU score. The
lower rank of Run 4 for METEOR and BLEU could be attributed to optimising with SCST with
BERTScore as the reward.

Shown in Figures 2 and 3 are generated reports for given medical images from the validation
set. Here, we inspect the impact of SCST on the generated reports (compared to only using
TF), as this had the largest impact on performance. Here, we use CvT2DistilGPT2-SA. Shown
in Figure 2 are examples where SCST outperforms TF (in terms of the BERTScore). For image
000414, both TF and SCST identify that there is contrast. SCST identifies the correct plane
and provides more details about the modality. However, neither identifies the empty sella.
For image 002044, both identify the modality and body part correctly. TF does not identify
the opacity. While SCST correctly identifies the opacity, the location was incorrect. In Figure
3 are examples where TF outperforms SCST. For image 008243, both identify the modality.
TF identifies that there is an aneurysm of the Internal Carotid Artery (ICA), but incorrectly
identifies the left ICA instead of the right ICA. TF also identifies that there is damage to the
right ICA (pseudoaneurysm) which is semantically similar to what was described in the label
(aneurysmal rupture). SCST incorrectly identifies the artery and the abnormality. For image
000193, TF identifies the right coronal artery, which is connected to the mitral valve. While
SCST identifies the body part, it introduces a false positive abnormality and identifies the wrong
artery. It should be noted that SCST identified calcification in three out of the four examples
shown in Figures 2 and 3, which indicates that SCST could increase hallucinations. While this
is a small sample of the differences between SCST and TF, it is clear that SCST did not improve
performance across all examples.

Table 2
Leaderboard for the caption prediction subtask of ImageCLEFmedical Caption 2023. The primary metric
used to rank the participants is highlighted in grey.

Team Name Run BERTScore ROUGE BLEURT BLEU METEOR CIDEr CLIPScore
CSIRO 4 0.643 0.245 0.314 0.161 0.080 0.203 0.815
closeAI2023 7 0.628 0.240 0.321 0.185 0.087 0.238 0.807
AUEB-NLP-Group 2 0.617 0.213 0.295 0.169 0.072 0.147 0.804
PCLmed 5 0.615 0.253 0.317 0.217 0.092 0.232 0.802
VCMI 5 0.615 0.218 0.308 0.165 0.073 0.172 0.808
KDE-Lab Med 3 0.615 0.222 0.301 0.156 0.072 0.182 0.806
SSN MLRG 1 0.602 0.211 0.277 0.142 0.062 0.128 0.776
DLNU CCSE 1 0.601 0.203 0.263 0.106 0.056 0.133 0.773
CS Morgan 10 0.582 0.156 0.224 0.057 0.044 0.084 0.759
Clef-CSE-GAN-Team 2 0.582 0.218 0.269 0.145 0.070 0.174 0.789
Bluefield-2023 3 0.578 0.153 0.272 0.154 0.060 0.101 0.784
IUST NLPLAB 6 0.567 0.290 0.223 0.268 0.100 0.177 0.807
SSNSheerinKavitha 4 0.544 0.087 0.215 0.075 0.026 0.014 0.687

CLEF scoreboard, the primary metric used to rank participants is 
highlighted in grey.

https://ceur-ws.org/Vol-3497/paper-132.pdf
https://www.imageclef.org/2023/medical/caption
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Symbolic or statistical 
artificial intelligence? 
In AI, there have traditionally been two schools with 
contrasting approaches – symbolic and statistical.

Using a dog training analogy, if you were consistent 
in your response to the opportunities for learning, the 
dog would have a strong set of data points on which 
to base their ‘intelligence’. For example, if every time 
your dog sat you gave her a treat, she would learn the 
connection between sitting and getting a treat. If on the 
other hand you gave your dog poor opportunities for 
learning, for instance your communication was not clear 
or non-existent, you were inconsistent in your responses 
or you used unpredictable stimulus for the learning 
opportunities, your dog may not learn as quickly or as well. 

Similarly, the quality of the data used to either train 
AI models or for AI based analysis has a direct impact 
on the quality of outputs and downstream tasks. 
Quality data for healthcare is defined by data that is 
accurate, complete, timely, and fit for purpose.

Machine learning uses data to give computers the 
ability to learn without being explicitly programmed. 

Classification vs regression

There are two main ML tasks: classification and regression.

Classification involves using a ML model to ‘classify’ some 
data according to a finite set of categories; for example, 
classifying the type of cancer found in a pathology 
report: breast, lung, etc. The simplest case being a binary 
classification – yes/no, true/false, cancer/not cancer, etc.

Regression, in contrast, involves using a ML 
model to predict a continuous value rather than 
a category. For example, predicting length of 
stay for a patient given their condition. 

Most ML models perform either regression or 
classification; however, there are models that 
can be implemented to cover both. 

Symbolic AI

Symbolic AI refers to the representation or encoding 
of human knowledge into a form of known facts 
and/or rules, typically known as ontologies. 
These facts or rules are then used with data to 
reason, or infer, other facts from the data. 

Statistical AI

Statistical AI takes the opposite approach – 
rather than predefining the knowledge and 
rules, it ‘learns’ these from data. This approach 
uses existing data and evidence along with 
computational techniques to extract patterns 
and insights to reason about the world. 

Traditional ML includes techniques such 
as regression, decision trees, support 
vector machine, Bayes network, K-nearest 
neighbour, principal component analysis. 
These techniques analyse various types of 
data – numerical, categorical, binary, time 
series, text, image, audio, and video data 
– to identify relationships in the data.Data, data models, 

quality, and standards

Machine learning

The ‘intelligence’ component of AI depends on data. 

A simple analogy is to consider how you might go 
about training your dog. You could provide the dog 
multiple opportunities to perform the task. These 
opportunities would exist as data points in the dog’s 
learning. The dog would use the data points to 
decide how to respond to a command you give. 

In the same way, the intelligence component of AI uses 
data points to make decisions based on commands. 
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Three of the main machine learning techniques are: 

• statistical ML aims to find some type of 
predictive function from the training data

• reinforcement learning approaches provide AI 
algorithms with ‘rewards’ or ‘penalties’ based 
on their problem-solving performance

• deep learning approaches make use 
of artificial neural networks.
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Health data 

All models depend on health data. 

Health data comes in various forms. As many AI approaches are linked intrinsically to the data 
type, the table below outlines some of the more common types of health data (Table 1). 

Table 1: Categories of health data

DATA TYPE  DESCRIPTION  FORMAT AND STANDARDS 
AVG. SIZE/
PATIENT 

Clinical Data  A wide range of data used by health 
organisations:

• patient records and is what large 
electronic health record systems 
would store.

• laboratory data (e.g. pathology 
and radiology reports).

Includes unstructured (free-text narratives) or highly 
structured (e.g. intensive care unit (ICU) observations) 
data.

There is a strong drive to develop standards for clinical 
data:

• HL7 for messaging/transfer of clinical data

• FHIR to replace many older HL7 for better patient data 
interchange

• SNOMED CT – an ontology for medical knowledge 
representation

• International Classification of Diseases (ICD) – 
a classification for diagnostic coding

• Human phenotype ontology for describing features 
associated with genetic disease

100s MB

Genomics data Growing source of data as 
precision medicine becomes more 
commonplace.

Includes single gene tests, panel 
tests, whole exome sequencing, 
whole genome sequencing.

With precision medicine, the 
boundary between clinical and 
genomic data will narrow.

Genomic data can be provided in multiple forms of 
processing stages each with its own set of standards or 
uniquely structured data, ranging from raw sequence 
data such as FASTA (consensus genome sequence) and 
FASTQ (sequencing reads), processed data such as 
SAM/BAM (aligned reads), to tertiary derivatives such as 
VCF (genomic variant information) or unique structures 
for annotated VCFs, methylation, transcription etc. 
This is more dominant in the non-human domain such as 
metagenomics or pathogenomics.

138 GB (whole 
genome, FASTQ) 

10s-100s GB/
cohort (VCF)  

Imaging Medical images typically arising from 
radiology.

Imaging results from MRI, CT, X-ray, 
PET etc.

Standards such as DICOM exist to capture medical 
images; however, these are still pictures (or 3D images) 
represented with pixels.

Modality 
dependent, 
100s MB–GB 

Administrative 
data

Data not associated directly with a 
patient’s medical condition. Includes 
billing, insurance, financial data, and 
efficiency metrics and patient flow 
numbers.

A mix of structured and unstructured. Use of some 
terminology systems such as ICD-10.

100s MB

Sensor and 
wearables data

Data provided by sensors. Sensors 
vary widely from ICU observations 
through to wearables in the home. 
Rapidly growing areas with the 
Internet of Things (IoT).  

Often numeric, structured and time-series based. 
Can be image, sound, number, or text.

Varies greatly
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Supervised vs unsupervised learning

ML models learn from data, either supervised or 
unsupervised.

Supervised learning means that the computer is 
provided with the correct answers or labels along 
with the data. For example, the is provided with 
lung X-rays labelled with either ‘cancerous’ or 
‘not cancerous’ and then learns characteristics of 
the image that indicate these classifications. 

Unsupervised learning means the computer is not 
directed by any manually provided answers or labels. 
An example would be clustering algorithms that group 
people’s genome by their ethnic backgrounds.

Deep learning

Deep learning is an approach that uses artificial 
neural networks for either classification or 
regression, both supervised and unsupervised. 

The name deep learning comes from the fact that 
their architecture has many ‘deep’ layers of neural 
networks. These can capture richer and more high-level 
features in the data they are provided; for example, 
deep learning for facial recognition will capture both 
coarse grained location of the eye within the face 
as well as more fine-grained parts of the eye. 

Deep learning shows impressive results in a 
variety of domains but is particularly well suited 
to image processing and speech processing.

Predictive analytics and data driven intelligence 

Predictive analytics and data driven intelligence refer 
to the analysis of data and the discovery of patterns 
that provide novel insights to inform workflow and 
decision making in the chosen business domain. 

These are often used in the context of big data and employ 
AI and ML techniques to extract meaning and knowledge 
from this data to discover relationships and trends, 
forecast more accurately and reliably, guide informed 
decision-making, and optimise business operations.

Predictive analytics and data-driven intelligence 
might use health data to help improve capacity 
management and patient flow through the health 
system, develop patient-centred evidence-based models 
of care, address the burden of chronic disease, health 
monitoring and management of home-based care. 
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Example

While there several terminologies for representing 
medical knowledge, one that adheres the formal 
logic mentioned above is the SNOMED CT ontology. 
In SNOMED CT, knowledge representation is 
achieved through three core components:

• Concepts: a specific medical concept identified 
through a unique numerical code e.g. 
74400008 is the code for appendicitis.

• Descriptions: textual descriptions for a concept, 
for which there may be multiple e.g. the 
descriptions ‘heart attack’ and ‘myocardial 
infarction’ both pertain to concept 22298006.

• Relationships: which connect concepts 
together e.g. ‘appendectomy’ can actually 
be represented as a relationship between 
the ‘appendix’ and ‘excision’ concepts.

A sample portion of the SNOMED hierarchy as visualised by the CSIRO Shrimp browser for cardiomegaly.

Knowledge representation and reasoning

Knowledge representation and reasoning is a core 
tenant of AI and typically an example of symbolic AI. 
An intelligent system needs to represent information and 
knowledge in a form that computers can understand to 
solve complex problems such as diagnosing a medical 
condition or understanding natural language. Once 
knowledge is appropriately represented, reasoning 
systems can then apply this knowledge in new 
situations, to acquire or infer novel knowledge. 

From a knowledge representation perspective, health 
is quite unique. This is because considerable effort 
has been made to capture and represent medical 
knowledge in a standardised and machine-reasonable 
manner. Today, some of the largest domain-specific 
knowledge representation systems are health based.

CSIRO’s AEHRC has a long history of development of tools 
that support the adoption and use of SNOMED CT. This 
includes a reasoning engine able to use SNOMED CT to 
infer new knowledge, a terminology service that allows 
third parties to easily look up, retrieve and leverage 
SNOMED CT concepts, and support for analytics of 
clinical data captured as SNOMED CT codes in electronic 
health records or other clinical information systems. 

Heart disease Cardiomegaly

Cardiac dilatation

Fetal cardiomegaly

Congenital cardiomegaly

Cardiomegaly – hypertensive

Hypertrophic cardiomegaly

Cor bovinum

Structural 
disorder of heart
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Information models

The easiest way to think of an information model 
is of a simple form for collecting data. In this case 
the form’s fields provide the information model 
while the data collected in each field might be 
from a standard terminology, or free text etc. 

For instance, there might be a field to capture diagnosis 
and the data captured in the form should come from the 
‘clinical finding’ hierarchy of the SNOMED CT terminology. 
In healthcare, HL7 is the international standards body 
for standards supporting the transfer of clinical and 
administrative health data. Their standards, including 
HL7 v2, CDA (Clinical Document Architecture) and FHIR 
(Fast Healthcare Interoperable Resources), are the bedrock 
information models used for sharing information in 
healthcare. The information model – whether it is a 
HL7 standard or one of many others – provides the 
‘meta-data’ for any data used in AI or ML applications.

Human language understanding

Humans communicate in natural language, which 
is ambiguous, does not follow strict syntactic or 
semantic rules and is therefore difficult for machines 
to understand. In response, there has been a strong 
emphasis to avoid using natural language and adopt 
standard terminologies (e.g. SNOMED CT and ICD). 

However, for certain tasks – such as communication 
between humans – natural language remains the most 
effective format. In response, computational methods for 
natural language processing (NLP) and, more generally, 
natural language understanding have emerged.

With the advent of new deep learning models for NLP, 
considerable improvements have been made in the field. 

Imaging

Imaging and vision are key applications of AI – used 
to extract information from images and to make 
decisions. Imaging applications can range from using 
images taken by regular cameras through to images 
acquired by advanced imaging machines typically used 
in healthcare. In the case of visual applications, images 
are processed in real time and used for applications in 
robotics, which are increasingly deployed in medical 
applications from surgical robots to social robotics.

QUICK SCIENCE

From mobile health to 
wearable devices 
AEHRC has been at the forefront of mobile health 
research since 2014, when we conducted the world’s 
first validation of a mobile health enabled cardiac 
rehabilitation program. Under- utilisation of cardiac 
rehabilitation results in adverse patient outcomes 
and increased hospital admissions. We aimed to 
improve rehabilitation participation by providing an 
alternative to standard in-clinic care through mobile 
app delivered cardiac rehabilitation – including 
physical exercise, counselling, health monitoring and 
education support. The trial, with 120 participants, 
clearly demonstrated the acceptability of this 
option, with greater uptake, adherence, and a 30% 
increase in completion of cardiac rehabilitation 
compared to an in- clinic delivered program. 

Since then, the AEHRC has undertaken several trials 
in mobile health using a similar approach, while also 
expanding our research to include other sources of 
data beyond mobile phone apps. This includes sensors 
in homes and integration with medical devices 
to monitor and support the health and wellbeing 
of aged people living alone. We have developed 
wearable sensors for babies to monitor movement 
for early detection and diagnosis of conditions such 
as cerebral palsy. We have also investigated chatbots 
to provide monitoring and support for a wide 
range of physical and mental health conditions. 

These innovations and integration in mobile 
health, connected devices, and wearables shift the 
paradigm of tele-health and tele-medicine using 
video conferencing to ‘virtual care’, in which access 
to healthcare and data is pervasive, and can be 
delivered to the patient at home or in the community. 

Increasingly these models of care use AI to analyse the 
data being captured in real time. The novel analytics 
developed using AI span monitoring and diagnosis 
to prediction of likely events at individual level, as 
well as providing an aggregated view of healthcare. 
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3

Safe and 
Responsible AI
With the rapid uptake of AI systems 
by health SMEs, hospital systems 
and clinicians, it is vital for the 
health sector, perhaps more than 
any other, to ensure responsible 
and ethical implementation. 
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Examples of frameworks for responsible AI 

Among the multiple examples of frameworks for 
responsible AI is the Australian Government’s 
Department of Industry, Science and Resources 
has published an artificial intelligence ethics 
framework comprising 8 principles to help 
ensure AI is safe, secure, and reliable. 

Examples of AI Frameworks:

AU: https://www.industry.gov.au/publications/
australias-artificial-intelligence-ethics-
framework/australias-ai-ethics-principles

EU: https://artificialintelligenceact.eu/

USA: https://www.nist.gov/itl/ai-
risk-management-framework

Canada: https://ised-isde.canada.ca/site/
innovation-better-canada/en/artificial-intelligence-
and-data-act-aida-companion-document

Responsible AI at CSIRO
CSIRO’s National AI Centre (NAIC) is at the forefront of 
developing and encouraging the adoption of responsible 
AI practices for industry. This work is being carried out 
principally by NAIC’s Responsible AI Network. Together 
with their partners and collaborators, the Responsible 
AI Network provides curated guidance and advice 
for the development of a world-class capability in 
Responsible AI. This is done via seven actionable pillars:

As the application and technological advancements of 
AI continue to expand, a range of ethical concerns has 
surfaced regarding its implementation, especially in 
human-sensitive environments such as healthcare. 

AI is revolutionising research and industry by expanding 
into previously human-exclusive areas, bringing 
breakthroughs and potential harms to individuals 
and groups including discrimination, misinformation, 
polarisation, deepfakes, scams and cyber-attacks. 
Such technological disruption calls for governance to 
ensure human-safe and responsible usage of AI.

Responsible AI encompasses a developing interdisciplinary 
field that delves into the ethical implications of AI, 
aiming to identify, comprehend and regulate the ethical 
obligations associated with this fast-evolving technology. 
The focus of responsible AI lies in the conscientious 
development, deployment, and operation of AI systems 
that adhere to ethical standards, promote transparency, 
and establish governance and accountability. By doing 
so, responsible AI seeks to mitigate biases and foster 
fairness, equity, and equality, with the ultimate goal 
of ensuring the safe usage of AI systems and the 
protection of the human rights of the users involved.

Law Standards Principles Governance

Leadership Technology Design

Over the past decade, considerable efforts have been 
made to reconcile ethical considerations with the 
transformative potential of AI, resulting in various AI ethics 
guidelines globally. These ethics guidelines are mainly 
constructed around human rights and risk mitigation for 
their violation. While various ethical AI guidelines were 
proposed by reputable international organisations such 
as UNESCO, World Economic Forum (WEF), Organisation 
for Economic Co-operation and Development (OECD) and 
IEEE, as well as national governments including EU, USA 
and Canada, the operationalisation of such guidelines is 
still unclear and yet to be defined. The operationalisation 
of responsible and ethical AI guidelines requires 
AI regularisation, the establishment of standards, 
appointments of advisory boards and ethics officers, the 
formation of processes for trustworthy AI assessments 
as well as raising awareness, community participation 
and building capabilities. While the operationalisation of 
the existing frameworks is not landed yet, it is important 
to create inclusive, interdisciplinary, and ongoing 
discussions across sectors to shape the regulatory 
processes and to size the potential of AI in a safe way. 

https://artificialintelligenceact.eu/
https://www.nist.gov/itl/ai-risk-management-framework
https://www.nist.gov/itl/ai-risk-management-framework
https://ised-isde.canada.ca/site/innovation-better-canada/en/artificial-intelligence-and-data-act-aida-companion-document
https://ised-isde.canada.ca/site/innovation-better-canada/en/artificial-intelligence-and-data-act-aida-companion-document
https://ised-isde.canada.ca/site/innovation-better-canada/en/artificial-intelligence-and-data-act-aida-companion-document
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While AI has immense potential to improve wellbeing, 
quality of life and grow our economy, the current 
regulatory framework likely does not sufficiently address 
known risks presented by AI systems, particularly in high-
risk settings. It is crucial to ensure the design, development 
and deployment of AI systems in Australia in legitimate, 
but high-risk settings, is safe and can be relied upon, while 
ensuring the use of AI in low-risk settings can continue to 
flourish largely unimpeded. It is recognised that we need 
to design modern laws for modern technology. Harms can 
be prevented from occurring through testing, transparency, 
and accountability measures, clarifying and strengthening 
laws to safeguard citizens, working internationally to 
support the safe development and deployment of AI.

While the operationalisation of the existing 
frameworks is not landed yet, it is important 
to create inclusive, interdisciplinary, and 
ongoing discussions across sectors to 
shape the regulatory processes and to 
size the potential of AI in a safe way. 

Australia’s AI Ethics Principles at a glance

Human, societal and 
environmental wellbeing

AI systems should benefit 
individuals, society and 
the environment.

Human-centred values

AI systems should respect 
human rights, diversity, 
and the autonomy 
of individuals.

Fairness

AI systems should be 
inclusive, accessible, 
and should not 
involve or result in 
unfair discrimination 
against individuals, 
communities, or groups.

Privacy protection 
and security

AI systems should 
respect and uphold 
privacy rights and data 
protection and ensure 
the security of data.

Reliability and safety

AI systems should 
reliably operate in 
accordance with their 
intended purpose.

Transparency and 
explainability

There should be 
transparency and 
responsible disclosure so 
people can understand 
when they are being 
significantly impacted 
by AI and can find out 
when an AI system is 
engaging with them.

Contestability

When an AI system 
significantly impacts 
a person, community, 
group or environment, 
there should be a timely 
process to allow people 
to challenge the use or 
outcomes of the AI system.

Accountability

People responsible for 
the different phases of 
the AI system lifecycle 
should be identifiable 
and accountable for 
the outcomes of the AI 
systems, and human 
oversight of AI systems 
should be enabled.
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Challenges and 
opportunities

4

The digital transformation of the 
healthcare system carries with it 
multiple opportunities and challenges. 
We cover some of them in this section. 
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Convergence of chatbots 
and voice assistants
The advent of conversational agents (e.g., Siri, Google 
Assistant, Alexa, etc.) and custom chatbots has meant 
that natural language interfaces to data are on the 
rise. This requires the ability to successfully interpret, 
reason, and respond in natural language, using NLP. 

Contributing to significant advancement and growth are 
the new generative language model technologies (OpenAI’s 
GPT-4, Google’s BERT, etc.), the availability of vast amounts 
of training data, and the exponential growth in computing 
power (including specialised processors called GPUs). 

Digital tools using this technology for medicine are 
emerging – leveraging modern digital health standards 
such as FHIR to access data in electronic medical records 
(EMRs) and the SMART on FHIR application framework 
to embed practical applications in those EMRs. 

An early example is Suki AI, a voice based medical assistant 
that understands the context of the doctor’s practice and 
can learn their preferences. The system is so advanced 
that it determines intent (a command to review existing 
notes versus dictation of new ones) and accurately selects 
from similar terms (e.g., peroneal vs. perineal) to create 
clinically accurate notes. The technology leverages FHIR 
and SMART to integrate with the major EMRs, allowing 
doctors to use their iOS, Android, web, and Windows 
devices to access patient information, such as medications 
or vital signs and to create notes, including ICD-10 codes. 

CSIRO’s Ontoserver is now levering NLP and the 
GPT-3 generative language model to build OntoGPT 
– supporting wider adoption through its simpler, less 
technical user interface to standardised terminology 
that, like Suki, could become a part of more facile 
digital physician charting while increasing the medical 
content that is structured into ontologies like SNOMED 
CT. This will contribute to the reuse of medical data by 
SMART on FHIR based clinical tools for purposes such as 
decision support as well as for analysis and research. 

OntoGPT navigates SNOMED CT’s complex structure to make it easy for its user to find the body structure affected by a rare disease.

As illustrated by Microsoft’s new Bing, chatbots and 
voice assistants are converging. This means people 
will be able to control more sophisticated chatbots 
with speech enabled virtual assistants to help 
them with far more complex tasks than checking 
the weather and potentially even in their jobs.

These technologies represent an extraordinary epoch 
in medicine, where machines will be able to lighten 
the administrative load for clinicians, offer therapeutic 
support through chatbots that can take histories and 
offer education to patients, and enable improved clinical 
decision making. This together with their ability to enhance 
patient care when they are linked to electronic records via 
SMART on FHIR represents a potentially rich and impactful 
research and implementation opportunity for CSIRO. 
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QUICK SCIENCE

Increasing interoperability
We have collaborated with government and 
industry stakeholders over several years to 
implement Fast Healthcare Interoperability 
Resources (FHIR) for primary care 
practice-to-practice exchange of health records. 

As an extension of this collaboration, AEHRC 
was funded in the 2023-24 Federal health 
budget to support the Department of Health 
and Aged Care, Australian Digital Health 
Agency and HL7au to provide coordination 
and subject matter expertise to accelerate the 
development of national FHIR standards. 

Compute
The biggest contributor to the rise of machine 
learning in the last decade is the significant 
increase in computational power. 

Ever since graphics processing units (GPUs), yes – the 
tools used for gaming – were leveraged for training 
deep artificial neural networks, an arms race has been 
in play. The paradigm in ML is that deeper and larger 
neural networks provide more performance, which in turn 
requires more and more powerful GPUs. This means that 
the development of machine learning technology goes 
hand in hand with the development of GPU technology 
and the number of GPUs available to the data scientist. For 
example, the recent rise of LLMs, such as ChatGPT, were 
made possible only with large clusters of GPU servers.

However, this kind of computational power 
requires significant investment, potentially 
resulting in large inequalities between research 
groups in terms of available compute. 

The lab with the bigger computer can train larger 
deep neural networks on more data and thus 
better solve a problem than other labs. 

While innovative machine learning techniques can subvert 
this narrative, research groups are at risk of falling short 
if they don’t have the compute available to adequately 
develop machine learning solutions. When applying 
this to digital health, not having enough computational 
power could prevent the development of machine 
learning solutions targeted at improving patient care. 

Regulation
AI and ML are increasingly used in medical software 
and devices. For clinical translation, several of our AI 
projects are considered Software as a Medical Device 
and will be subject to regulatory approvals (for example, 
TGA, FDA or CeMark approval). The pathway is well 
defined for AI where the model in each release is static, 
however there are both challenges and opportunities 
for deployed AI models which can learn from real world 
use and experience to improve their performance. 
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Medical imaging
Medical imaging (along with genetics) has 
become one of the key elements in precision 
medicine in advanced healthcare systems. 

Since the first use of X-rays in 1896, the fields of radiology 
and nuclear medicine have helped revolutionise the 
diagnosis and treatment of a whole range of health 
conditions. There is currently a long list of available 
modalities including X-ray radiography, magnetic resonance 
imaging (MRI), ultrasound, endoscopy, elastography, 
tactile imaging, thermography, medical photography, 
and nuclear medicine functional imaging techniques 
such as positron emission tomography (PET) and 
single-photon emission computed tomography (SPECT).

In healthcare, outcomes are dependent on the acquisition 
technology, interpretation, and communication of 
the medical images. Traditionally, medical imaging is 
usually interpreted qualitatively by trained experts. 
One of the opportunities for advancement in this area 
of AI and health is the development of technologies that 
extract and analyse quantitative imaging biomarkers 

for use in screening, risk stratification, diagnosis, 
and treatment for various clinical and research 
applications. The developed technology turns images 
into information that is used for earlier detection 
of diseases and improved diagnostic accuracy. 

A large component of this work involves the use of AI 
and in particular ML and deep learning approaches 
that can perform or improve image-based tasks such 
as image acquisition, reconstruction, quantification 
(segmentation) and analysis. This enables 
machines to interpret images using clinical scoring 
(of pathology), diagnosis and prognosis.

Not all imaging requires expensive medical imaging 
machines. Other applications of AI use images taken 
with regular cameras – for example when examining 
skin lesions or burns – or with cameras that photograph 
parts of the eye for retinal image analysis. Techniques 
include automated methods for registration of retinal 
images that are collected over time (longitudinally), 
or obtained using different retinal imaging 
devices/modalities, or are captured from different angles.

https://en.wikipedia.org/wiki/Radiography
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Ultrasound
https://en.wikipedia.org/wiki/Endoscopy
https://en.wikipedia.org/wiki/Elastography
https://en.wikipedia.org/wiki/Tactile_imaging
https://en.wikipedia.org/wiki/Thermography
https://en.wikipedia.org/wiki/Medical_photography
https://en.wikipedia.org/wiki/Nuclear_medicine
https://en.wikipedia.org/wiki/Functional_imaging
https://en.wikipedia.org/wiki/Positron_emission_tomography
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There are six main challenges/opportunities in medical imaging analysis.

AEHRC is currently undertaking research in these areas.

Case study comparing a ‘ground 
truth’ radiologist’s report with 
a machine learning generated 
report of a chest X-ray. Taken 
from: https://doi.org/10.1016/j.
artmed.2023.102633 

1 Registration  
Mapping imaging data between 
time points or different patients.

2 Synthesis  
Generating a new type 
of medical image from a 
input image, for example 
generating synthetic CT for 
radiation therapy planning. 

3 Reconstruction 
Combining data from different 
sensors to generate 2D or 
3D images, for example 
generating 3D volumes from a 
set of ultrasound images taken 
from different positions.

4 Multi-modal prediction 
Combining different type of 
data, such as imaging and text, 
to generate new insights.

5 Segmentation  
Identifying the anatomical 
boundaries in images, for 
example quantifying different 
substructures in the heart.

6 Classification 
For example, determine whether 
there is fracture present in 
a wrist x-ray? Or identify 
whether a patient is likely to 
respond to cancer treatment.

https://doi.org/10.1016/j.artmed.2023.102633
https://doi.org/10.1016/j.artmed.2023.102633
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QUICK SCIENCE

Reducing clinician 
burnout with AI
Clinicians are often burnt out with clinical 
documentation a key contributor. Using machine 
learning, our project will develop new medical 
imaging tools that can make diagnostic predictions 
from not only medical images, but also clinical 
text such as reports. This means in the future, 
these tools could potentially improve the 
efficiency of image interpretation and reduce 
the burden of clinical documentation.
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AI and workforce
There are multiple health workforce challenges locally 
and globally. These include growing demands due to 
more complex disease profiles combined with an ageing 
population and increased consumer expectations.

In addition, there are also various new workforce pressures 
that accompany changes in the labour market, including 
increased burden of administration, resulting in clinician 
burnout and challenges to recruit and retain staff.

The use of AI can ameliorate/buffer these challenges 
through supporting the health ecosystem at each layer:

Systems level

AI enables the use of data for reporting and 
identification of system efficiency and improvements, 
thereby reducing administrative burden on 
clinician, freeing up clinician’s time for more direct 
patient care or leadership/strategic work.

Clinician level 

AI enables appropriate data to be provided to clinicians at 
point of care, reducing clinician’s time on time-consuming 
work that are comparatively ‘low value’ (or less 
complex/ require less cognitively demanding parts), 
such as liaising with other clinicians on complex care, 
basic triage, streamlining diagnosis and treatment process.

Patient level 

Reduces demand on the system and clinician, 
patients are afforded higher quality treatment, 
personalised medicine reduce the diagnostic odyssey 
and improved patient experience and outcomes.

Research level

Discovery of new treatment and interventions 
required – reduce system demand and improved 
patient experience and outcomes.

Developing the AI workforce

AI is already in use by the healthcare workforce. The use 
of SNOMED CT is an excellent example of symbolic AI 
in healthcare. The use of SNOMED CT enables FHIR 
and the use of embedded SMART apps in electronic 
medical records, which can help reduce the burden of 
administration for clinicians and other health staff. 

There are still more actions needed to fully 
digitise Australia’s healthcare workforce. 

To harness the capabilities already at our disposal within 
the health ecosystem appropriately and responsibly – 
it is critical that our workforce (from clinicians, scientists, 
system administrators etc) are equipped to identify 
both the opportunities, challenges, and potential 
pitfalls as we navigate these new paths together.

To this end AEHRC is involved in several initiatives 
aimed at educating the workforce to prepare them for a 
digitised work experience. Our engagement through FHIR 
connectathons educated the Australian healthcare industry 
and community to active, enthusiastic, and confident 
adoption of standards. To date, we have held over 30 events 
and community forums, each involving over 120 clinicians, 
software engineers and policy makers. We are also 
working with the university sector to provide FHIR training 
courses, as well as developing opportunities with health 
bodies such as Queensland Health to develop staff on FHIR 
aligned activities. Examples such as these help to build 
a robust workforce ready for the digitisation of health.
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Aged care
There is an increasing interest in how AI might impact 
care provision and enhancement of day-to-day function 
for those ageing at home or residential care. With an 
ageing population and a dwindling aged care workforce, 
the evolution of AI is bringing hope and curiosity.

Aged care, both residential care and community-based 
care, is actively looking for solutions to assist in providing 
enhanced care while also implementing the Australian 
Government’s Aged Care Digital Transformation Strategy. 
This strategy is predicted to set a standard by which 
aged care providers can be guided, to some degree, 
in the acquiring and using technology to support the 
delivery of care. This should act to enhance opportunities 
in using AI in all areas of the aged care industry.

Opportunities for AI hold promise for more 
freedom for older Australians, as well as 
better support and clinical vigilance. Some key 
technologies for this include the development of 
new innovative assistive technologies to support 
day-to-day functioning of people living at 
home and in residential care facilities, wearable 
medical devices, algorithms for clinical decision 
support, and preventative risk management.

Opportunities for AI hold promise for more freedom for 
older Australians, as well as better support and clinical 
vigilance. Some key technologies for this include the 
development of new innovative assistive technologies 
to support day-to-day functioning of people living at 
home and in residential care facilities, wearable medical 
devices, algorithms for clinical decision support, and 
preventative risk management. These technologies may 
allow for consensual tracking of activities, collection 

of clinical data, support in clinical decision making and 
the enabling of agentic, preventative health behaviours 
based on feedback from technological devices. However, 
opportunities, especially given considerations of the 
age cohort and the resource demands of the industry, 
bring risk and challenge, and these must be considered 
in the ongoing introduction of AI into aged care.

While many technologies and IoT devices are already 
available for use, key challenges for the introduction of 
AI into the aged care area include the lack of rigorous 
evidence of the impact of AI-enabled products and services 
including physical, emotional, and ethical considerations; 
education of users to know what they are engaging 
with and how to use it appropriately and safely. Further 
research is needed, and should be actively sought out and 
supported, to ensure this type of technology is thoroughly 
understood, challenged, is reliable and effective. AEHRC is 
working to engage in multi-disciplinary research so that a 
broad lens is used in testing and validating AI in aged care.

Current AEHRC AI/aged care research

Smart homes for independent 
living mobile health 
applications and clinician 
platforms to support chronic 
conditions (e.g., secondary 
prevention of stroke)

Eye health 
diagnosis and 
prevention

Falls 
prevention

Responsible 
use of AI in 
aged care 
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Consent
As our society becomes more digitally literate and we 
start to appreciate the power of data, our demands 
for data privacy and security will increase. Specifically, 
patients and research study participants will want to 
have full ownership and control of their information. 
One aspect of this is dynamic consent, where access 
to personal information can be given and revoked 
depending on the context the information is used in.

Historically, individuals provided written consent, 
for example a blanket consent to all future medical 
research on their data. This was needed because 
returned to the individual to ask for informed consent 
for every new research use of their information was 
technologically and logistically impossible. This has 
stifled participation and limited the usefulness of the 
collected data as certain entities (commercial) were 
automatically precluded under this provided consent. 

Advancement in digital consent and the communication 
through personal devices (phones, tablets) now enables 
efficient two-way interactions with participants and 
holds the promise for true dynamic consent.

Besides enabling individuals to control their data, another 
aspect of future-proofing consent is for individuals to 
have full ownership of their data. This can be achieved 
through several approaches, such as distributed 
storage and homeomorphic encryption of data, 
self-sovereign identity for management of credentials, 
and tamper-proof decentralised dynamic consent objects.

‘…the key for all future-ready consent platforms 
is to put the human at the centre of the design.’

However, the key for all future-ready consent platforms is 
to put the human at the centre of the design. Specifically, 
the sociocultural angle of molecular and medical data 
management must be considered as it encompasses 
the social license for research and medical applications. 
This in turn impacts participation, especially of Indigenous 
populations and, with that, our ability to provide the 
best care for the diverse populations of our countries.
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sBeacon
Increasingly an individual’s genetics can be used 
to aid diagnosis or treatment decisions. This is 
referred to as precision medicine – the diagnosis 
and treatment of disease based on an individual’s 
genes. And it’s also true on a public health level. 
Two distinct challenges with using informative genetic 
information at the public health level involve the 
lack of diversity in the genetic databases, as well as 
challenges in accessing and analysing the data. 

sBeacon offers a solution to these difficulties by 
creating a federated learning solution to allow 
exchange of specific information without sharing 
an entire database. The tool is also relatively 
cost-effective, allowing less wealthy nations the 
ability to contribute population data to data banks. 
On the other end of the spectrum, sBeacon also 
supports mega-biobanks by scaling to 3 billion 
genomic locations and 40 million individuals and is 
the only production-ready federated data exchange 
implementation of the GA4GH Beacon v.2 specification.

Disability (NDIS Assessment 
Framework)
Provided it is developed in true consultation with the 
disability community, digital technology has the potential 
to transform the lives of people with disability. This is 
particularly the case when AI is embedded within assistive 
technologies. In such cases, AI can promote better 
functioning and greater independence and dignity.

One of the challenges with AI-enabled assistive 
technology is ensuring that products and services are 
fit for purpose for the people who use them. Not all 
technology is well suited to everyone, and there is 
often limited guidance on the identification and use 
of assistive technology for people with disability. 

Working with people with disability, carers, and industry to 
guide market development and support improved matching 
of technologies to individual needs and preferences is 
one way to help surmount the challenge of harnessing 
the full potential of AI-enabled assistive technology. 

There are opportunities for AI to assist people with 
disability in their daily lives. We’ve already begun to see 
the benefits of mobile technology to support people 
who are blind or partially sighted, and a range of digital 
products to support people living with epilepsy, mobility, 
and audio-visual impairments. But the expansion of the 
assistive technology space must be informed by people 
with lived experience of disability to ensure that products 
are safe, appropriate, and beneficial for individuals. 

An example of the collaborative work needed in this 
space is our project with the National Disability Insurance 
Agency (NDIA), in which we developed a principles-based 
evaluation framework for AI-enabled assistive technology.

Our approach

The Framework draws on current frameworks, 
guidelines, and academic research as well as multiple 
rounds of stakeholder consultation with people with 
disability, their carers, industry representatives, peak 
bodies, researchers, service providers and government 
departments. This rounded and inclusive collaboration 
resulted in a person-centric approach for assessing 
AI-enabled assistive technology that accounts for an 
individual’s needs and preferences, as well as the context 
(environmental, social, and cultural factors) in which 
the AI-enabled assistive technology will be used.

It also acknowledges the unique capabilities, 
preferences, and goals of end-users. The principles-
based framework is guided by a set of six core 
domains. Each domain encompasses a principle, 
and two or more critical measurement areas.
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Case studies
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This method could help inform an early warning 
system that can determine which variants will be 
the deadliest to humans. Our approach was able to 
identify variants that could be monitored a week 
before they were flagged by health organisations.

‘We can also apply this approach 
to other viruses – in fact it has the 
potential to become the international 
standard of disease surveillance,’ said 
Transformational Bioinformatics group lead 
and Research Scientist, Dr Denis Bauer. 

CSIRO worked with RONIN, whose cloud-based 
system supported the analysis, and Intel on the 
study, which is the largest of its kind in the world.

As COVID-19 spreads, the virus that causes 
COVID-19, SARS-CoV-2, accumulates mutations 
or changes in its genome, resulting in variants 
that result in more severe disease. 

The current method of searching for dangerous 
SARS-CoV-2 variants is to look at the spike protein for 
single-mutation changes that might indicate more 
harmful effects in the human host. This method is 
limited in its capacity to detect groups of mutations, 
or mutation ‘signatures’ that can modulate disease risk. 

By using a variant analytics pipeline, researchers can 
analyse the genome of the whole variant, identifying 
mutations and signatures that affect disease prognosis, 
allowing for a more wholistic understanding of their 
potential functional impact. The dataset used for this 
study consisted of too many datapoints to be analysed 
by traditional methods used for association studies. 
So, machine learning represented a solution for the 
analysis of large amounts of data to make these vital 
assessments of harmful SARS-CoV-2 mutations.

We used machine learning to develop a cost-effective 
and accurate machine learning solution to identify severe 
COVID-19 causing mutations in SARS-CoV-2 viral genomes. 

We developed a faster and more comprehensive way to 
identify emerging and dangerous COVID 19 variants, by 
analysing the genome of the whole variant, rather than the 
current method of monitoring changes to the spike protein.

We used the analytic capability of a powerful machine 
learning tool we developed called VariantSpark. 
Using this tool, we were able to analyse the genomes 
of 10,520 SARS-CoV-2 samples, which is the largest 
number of samples ever analysed in this way.

VariantSpark for identification of SARS-CoV-2 variants
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Anti-microbial resistance (AMR) is increasing around 
the world and becoming a major threat to human and 
animal health in Australia and elsewhere. Monitoring 
outbreaks of AMR bacteria and infections is an increasingly 
important line of defence against possible bacteria-borne 
epidemics. Outbreaks in Australia are likely to come 
from the tropical northern region and can travel quickly 
through human and animal vectors if not contained. 

CSIRO Research Scientist and Research Team Lead for 
the Digital Solutions for AMR group Teresa Wozniak, 
says ‘We know AMR is a global problem. In Australia, the 
problem is hidden because national surveillance activities 
don’t capture the most vulnerable Australian populations.’

The HOTspots program delivers critical data on 
antimicrobial resistance (AMR) to clinicians and policy 
makers to reduce the threat in Northern Australia. 
A digital platform offers secure and interactive 
spatiotemporal AMR analytics and data visualisation 
to practitioners and health decision-makers. 

Currently over 200 sites contribute data to the HOTspots 
program. Data comes directly from pathology providers, 
hospitals, community clinics and GP practices. Clinicians 
can use the data in clinical decision-making about antibiotic 
prescriptions, including updating local antibiotic guidelines, 
stewardship education and program development.

HOTspots surveillance and response program

The HOTspots program contributes data to national 
surveillance activities via the Antimicrobial 
Usage and Resistance in Australia program 
to fill the gap in the surveillance of regional 
and rural settings in Northern Australia. 

HOTspots is currently focussed on expanding 
geographically to other states and territories and to 
include data from animal and environmental sector.

HOTspots team members Teresa Wozniak, 
Lorraine Bell and Majella Murphy on a 
research trip in Darwin for HOTspots.
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1 in 5 men in Australia experience prostate cancer. 
While there are delineation guidelines for radiation 
therapy clinical trials, these can sometimes differ from local 
guidelines. Protocol adherence can also be different across 
sites. This can lead to the potential for uncertainty which 
may degrade the accuracy and quality of reporting from 
the trials. One of the challenges faced in these clinical trials 
is that the volume delineation quality assurance is usually 
performed manually by radiation oncologists who are also 
the trial principal investigators. When done manually, this 
is time consuming and labour intensive and dependent 
on human factors such as attention and vigilance for 
its accuracy. In practice this means that only a small 
portion of the plans for trial participants are reviewed.

Machine learning methods are well suited to provide 
automated quality assurance of volume delineation in 
radiotherapy. Recent years have seen a few attempts 
to develop automatic radiotherapy delineation quality 
assurance tools on CT, many of which operate on 2D slices. 
Compared with CT, MRI has higher soft tissue contrast 
without using ionising radiation so is increasingly used 
with pseudo-CT in prostate cancer radiotherapy planning.

‘Machine learning has the potential 
to improve the efficiency of volume 
delineation quality assurance and reduce 
the uncertainty in radiotherapy planning.’ 
Hang (Hollie) Min, CSIRO Research Scientist

Currently, there is still a lack of research on automatic 
delineation quality assurance for MRI-based radiotherapy.

In this world-first study, we investigated the efficacy of 
automatic radiotherapy delineation quality assurance on 
prostate MRI in a multicentre clinical trial. We developed 
and validated an automated machine learning system which 
flags clinical target volume and organs of risk delineations 
that may not meet trial protocol and therefore require 
further review and revision by radiation oncologists.

An artificial intelligent system for prostate 
cancer diagnosis in whole slide images

Radiation therapy is one of the main methods 
for treatment for prostate cancer.

Anyone who’s experienced radiation treatment for cancer 
will understand the level of care and attention given to the 
measurements of the site receiving radiation. The reason for 
this vigilance is because clinicians need to ensure they focus 
the radiation onto the cancerous tumour while simultaneously 
avoiding radiation toxicity to surrounding areas.

Clinical research trials make a vital contribution to the 
development of standards and protocols that guide 
cancer treatment. These best practice guidelines are 
especially important when cancerous tissue is small 
and surrounded by other organs, as is the case with the 
human prostate. The method to identify the boundaries 
of these volumes (‘volume delineation’) needs to be 
accurate and precise as it is used to guide the deposition 
of radiation in patients receiving radiation treatment.

Imaging via CT and MRI is one of the main sources of 
diagnosis and assessment for treatment in both clinical and 
research settings and is currently being used in image guided 
radiotherapy treatment trials. During these trials, which 
often take place across various hospitals and treatment 
centres, radiation oncologists plan treatment (including 
volume delineations) for patients according to a proposed 
clinical study protocol. They then send these plans to the 
lead study investigators for review. If the plans do not meet 
the trial protocol they are rejected (for example, if organ 
boundaries have not been correctly identified). Once the 
plans meet the trial protocol the patient is treated, and the 
treatment outcomes are recorded and eventually published.
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Hollie Min’s research is reducing 
uncertainty in radiology planning.

CSIRO Research Scientist, Hang (Hollie) Min, said 
machine learning has the potential to improve the 
efficiency of volume delineation quality assurance and 
reduce the uncertainty in radiotherapy planning.

To do this, we trained a machine learning model to 
assess the volume delineation and determine whether 
it is acceptable or a violation based on its similarity to 
the machine generated benchmark delineation. The 
model was then tested on data from a multicentre trial 
and generated a pdf report for clinicians to review.

Our outcomes showed the AI model can identify the 
delineations that did not meet trial protocol and require 
further revision. This can also be extended to radiation 
treatment for other cancers, and on both MRI and CT data.

CSIRO Principal Research Scientist and author on the 
published work, Jason Dowling, says that automated 
quality control is an increasingly important research 
field which may lead to improved patient treatment 
and outcomes. The method can be used for training, 
validating contours in real time, or for auditing data 
from retrospective radiation oncology databases.



40 AI trends for healthcare | March 2024

Data harmonisation for Alzheimer’s research

The imputation model used age, education, 
sex, and the apolipoprotein E (APOE) ε4 
genotype as predictors of missing data.

The harmonised cognitive measure was evaluated 
for its ability to predict clinical outcomes, 
including cognitive decline and conversion to 
mild cognitive impairment (MCI) or AD.

The results showed that the harmonised cognitive 
measure performed well in predicting clinical outcomes, 
and it was more predictive than using the original 
cognitive measures from each cohort separately.

Since the initial results were published we have extended 
the method to other cohorts with different cognitive 
tests or scales, in an international, multi-centre research 
project to track cognitive decline over time, and to 
identify individuals at risk of developing MCI or AD.

Our proposed method allowed us to create the 
largest dataset of Alzheimer’s disease in the 
world as part of this international research.

The method can also be used to harmonise other types of 
data across cohorts, such as imaging or biomarker data.

Large observational studies of patients with Alzheimer’s 
disease (AD) across the globe often involve different 
cognitive tests and scales. While the studies are all 
in the same area, the data from the studies are not 
consistent, making analyses and conclusions drawn 
from the data difficult. This difficulty often means 
insights about AD are not gleaned from existing data 
and, importantly, opportunities to know more from 
the massive amount of data that exists are missed.

To combat this challenge, the method used is to 
harmonise the data, which essentially means to bring 
all the various data into alignment so it can be analysed. 
We did this using an AI-based method for harmonising 
cognitive data across large observational cohorts in 
AD, which have different cognitive tests and scales.

CSIRO Research Scientist, Rosita Shishegar 
explains the importance of this data set to 
the discovery of prevention and treatment of 
Alzheimer’s, ‘If we can use digital technologies 
to find ways to prevent or even delay the 
onset of disease and give people more 
time with their families, that’s huge.’

We used a multiple imputation approach to create a 
common cognitive measure based on the available 
cognitive data from the Australian Imaging, 
Biomarkers, and Lifestyle (AIBL) and Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) cohorts.
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One of the major challenges in the digital transformation 
of healthcare is the management of data so it can be sent, 
queried, analysed, and the analysis easily understood. 

Pathling is a CSIRO developed tool that enables query 
and transformation of bulk and streaming sources of 
FHIR data. Pathling also works with a FHIR terminology 
server such as Ontoserver to facilitate query of clinical 
terminologies such as SNOMED CT across large datasets. 
Not only are these functions central to the ability to use 
data, they also represent a foundational capability that 
enables construction of the standards-based data pipelines 
to train the next generation of AI models within the 
healthcare sector. In other words, Pathling is an essential 
tool for future proofing Australia’s healthcare system.

Pathling uses

• Data preparation within Python and 
R data science workflows

• Creation of views for self-service 
analytics and business intelligence

• Providing a FHIR API for patient cohort 
identification and data extraction services

• Streaming analytics from real-time data 
sources such as medical devices

• Preparation of training data for machine 
learning and artificial intelligence

Recently the Federal Government commissioned 
Australian Genomics to develop recommendations 
around the implementation of a national approach 
to genomic information management. Pathling was 
selected to participate in a prototyping exercise to 
identify solutions to deliver this national infrastructure.

Pathling was integrated with the software that 
facilitates access to genomic research data to provide 
a connected solution. This is a federated system 
that allows access to genomic and phenotypic study 
information to researchers who have been authorised, 
while allowing the data to remain safely within the 
control of the custodians responsible for it.

This solution received excellent feedback from 
the international panel that reviewed it, which 
positions it well for inclusion in the next phase of 
development within the next funding cycle.

Pathling has also been a key driver behind the international 
‘SQL on FHIR’ initiative, which is an international 
standards collaboration aimed at making FHIR easier 
to use for analytic use cases. This new Health Level 
Seven standard builds on the work of our researchers 
to deliver standards that will enable ‘push button 
population health’, standards-based quality indicators, 
and further remove barriers to information blocking.

John Grimes 
CSIRO Principal Research 
Consultant and creator of Pathling.  
John is a leading expert in FHIR, 
clinical terminology and health 
analytics.

Pathling for scalable query of FHIR and clinical terminology data
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Dementia is the second leading cause of death of 
Australians and is likely in future to become the leading 
cause as our society ages. Despite this, there is no existing 
cure. Alzheimer’s disease is the most common form of 
dementia, estimated to make up 60-70% of cases (WHO, 
2023, who.int/news-room/fact-sheets/detail/dementia).

One suggested route for cure possibly involves the 
eradication of amyloid and tau plaques from the 
brain, as the presence of these biomarkers are among 
the hallmarks for the diagnosis of Alzheimer’s. 

Before we can consider how to develop medicines and 
other tools to cure Alzheimer’s, work is needed to find 
evidence of how the brain changes throughout the 
progression of the disease, which can often take decades.

AI, with its capacity to analyse large amounts of 
data, is adept at gathering evidence about the 
progression of Alzheimer’s via imaging studies.

‘Before we can test the efficacy of amyloid 
related drug treatments, we need to be 
able to accurately measure amyloid in the 
brain. The impact of this research is vital to 
one of the potential treatments currently 
being developed in the Alzheimer’s space, 
called anti-Aβ therapy.’ Pierrick Bourgeat

Recent developments in medical imaging have allowed 
the in-vivo examination of brain pathology associated 
with Alzheimer’s disease, such as Aβ plaques, glucose 
metabolism, cortical atrophy and more recently, tau 
tangles. In vivo is a term to describe something inside 
an alive body as opposed to outside of a dead body. 
It’s important to look at the brain when it is still alive 
because once a person dies the brain immediately begins 
to shrink, which can sometimes affect the accuracy of 
methods that involve measurement. Two important 
tools for in vivo imaging are MRI and PET images. 

MRI is a useful tool for measuring neurodegeneration but 
as it focusses on cortical atrophy, it lacks the capacity to 
differentiate between a range of neurogenerative diseases 
that along with Alzheimer’s disease cause shrinkage of the 
cortex. PET, on the other hand, measures amyloid and tau 
proteins, which are specific to Alzheimer’s, making it an 
excellent tool for diagnosis and monitoring of the disease.

CSIRO Research Scientist and lead author on the 
study Pierrick Bourgeat said, ‘Before we can test 
the efficacy of amyloid related drug treatments, we 
need to be able to accurately measure amyloid in the 
brain. The impact of this research is vital to one of 
the potential treatments currently being developed 
in the Alzheimer’s space, called anti-Aβ therapy.’

A trial version of CapAIBL is available on MilxCloud, 
our web platform (milxcloud.csiro.au). 

Pierrick Bourgeat  
CSIRO Research Scientist

Measuring amyloid levels in Alzheimer’s disease

https://www.who.int/news-room/fact-sheets/detail/dementia
http://milxcloud.csiro.au
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AEHRC are leaders in the development of 
therapeutic chatbot technology. 

Chatbots are increasingly used therapeutically 
to both capture and deliver information. 

With a health system under pressure and clinicians 
struggling to keep up with administrative burdens, 
chatbots could help support clinicians ensure critical 
aspects of the therapeutic process, such as patient 
education, remote monitoring, and regular check-ins. 

Through AI technology scientists at CSIRO’s 
Australian e-Health Research Centre (AEHRC), are 
investigating whether clinician burden can be reduced 
without a deficit in the quality of patient care. 

So far, results are promising.

The AI chatbot framework is currently used in three 
chatbots at CSIRO – Dolores (pain chatbot), Harlie 
(a chatbot developed for people living Parkinson’s disease 
and other language disorders) and Quin (a smoking 
cessation chatbot) – was developed by CSIRO and partners. 

The chatbots are currently being tested for therapeutic 
efficacy as well as design and user-experience.

Dolores is a chatbot who works in chronic pain. 

The CSIRO research scientist who developed Dolores’ 
framework, David Ireland, said pain management 
support is a vital component of the healthcare system 
but one that is often quite resource heavy due to 
the prevalence of chronic pain in the community. 

He said, ‘Pain-related diseases, low back pain and migraine, 
are the leading causes of disability and disease burden 
globally. Chronic pain is a disease state in its own right but 
studies have shown pain education is a useful tool in helping 
people manage their chronic pain which is often incurable.’

Dolores conducts a pain history interview, then provides 
an education session for people with chronic pain. 

In a recent collaborative study Dolores was 
shown to be received positively in cohorts of 
patients across three different age groups. 

Scientists looked at how receptive different age groups 
(adolescents, young adults, and adults) are to the use 
of Dolores. The study suggested high acceptability 
in quality, accuracy, usability in all groups.

David Ireland 
CSIRO Research Scientist

Quin is a smoking-cessation chatbot, built by researchers 
at CSIRO, University of Queensland, and Prince 
Charles Hospital, that gives non-judgemental advice 
to quitters and sets up regular check-in appointments 
to improve consistency of therapeutic support. 

Quin was developed using a combination of thematic 
analysis of Quitline transcripts, clinician consultation and 
research into user experiences of quit smoking apps.

Quin builds a profile of the user and then provides 
advice about specific issues & challenges the user is 
facing in their quit smoking journey. After a consultation, 
Quin builds a TODO list which might include tasks 
such as ‘speak to your doctor about quitting’. 

Although Quin provides AI support for a person 
looking to quit smoking, it is designed to 
encourage human interactions. For example, 
it will encourage users to phone the Quitline. 

Quin is available 24/7 on the mobile phone to provide 
advice or encouragement. Early focus groups revealed some 
participants conveyed a sense of accountability to Quin. 

Future research is focussed on a clinical trial of Quin’s efficacy. 

Harlie is an artificial conversational agent and is designed 
to converse with users with neurological conditions that 
may impair speech, such as Parkinson’s and dementia, 
or even autism. The more people interact with Harlie, 
the more conversation topics she develops. Harlie could 
in the future be used as a virtual companion for social 
interaction therapy, coaching and remote monitoring. 

AI-driven technology to develop chatbots for therapy 
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Activities of daily living: measure used in healthcare 
to refer to people’s daily self-care activities.

Artificial intelligence: computer systems developed to 
perform tasks normally requiring human intelligence, 
such as visual perception, speech recognition, 
decision-making, and translation between languages.

Biotechnology: technology based on biology, usually 
intended to improve human health and society.

Cloud: cloud computing is the delivery of computing 
services – including servers, storage, databases, 
networking, software, analytics, and intelligence – over 
the Internet (‘the cloud’) to offer faster innovation, 
flexible resources, and economies of scale. 

FHIR: Fast Healthcare Interoperability Resources is 
the rapidly growing global standard for representing 
and sharing health information. When combined 
with SMART it can support EHR/EMR connected 
health applications for a variety of clinical purposes 
for both practitioners and their patients.

HL7: membership-based not-for-profit public 
company that facilitates the adoption of e-health in 
Australia by promoting effective use of standards 
and products developed by HL7 International and 
supporting their enhancement to meet local needs.

Internet of things: tools that allow electronic 
devices to ‘speak’ with one another. 

Machine learning: field of study that gives computers 
the ability to learn without being explicitly programmed. 
There are two main ML tasks: classification and regression. 
Classification involves using a ML model to ‘classify’ some 
data according to a finite set of categories; for example, 
classifying the type of cancer found in a pathology 
report: breast, lung, etc. The simplest case being a binary 
classification – yes/no, true/false, cancer/not cancer, 
etc. Regression, in contrast, uses a ML model to predict 
a continuous value rather than a category. For example, 
predicting length of stay for a patient given their condition. 

Magnetic resonance imaging: describes an 
imaging technique that uses the magnetic field and 
radio waves to take pictures inside the body.

Natural language processing: using 
computational techniques to analyse and 
synthesise natural language and speech.

Ontoserver: next-gen FHIR terminology server 
developed by the Australian e-Health Research Centre.

SMART: technology layer that rests on FHIR to provide 
identification of app users, permissions to access clinical 
data and facile access to that data when apps launch.

SNOMED CT: clinical terminology owned, maintained, 
and distributed by SNOMED International.

Software as a medical device: Software, 
which on its own is a medical device.

Definitions
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ABI Acquired Brain Injury

ADL Activities of Daily Living 

AEHRC Australian e-Health Research Centre

AI Artificial Intelligence

AMT Australian Medicines Terminology

ASD Autism Spectrum Disorder

AWS Amazon Web Services 

CapAIBL Computational Analysis of PET for the Australian Imaging, Biomarker & Lifestyle Study of Ageing

COVID-19 Corona Virus Disease identified in 2019 

CP Cerebral Palsy 

CPU Central Processing Unit 

CSIRO Commonwealth Scientific and Industrial Research Organisation

CT Computed Tomography 

CT-MR Computed Tomography merged with Magnetic Resonance Imaging

ED Emergency Department

EHR/EMR Electronic Health/Medical Record

FHIR Fast Healthcare Interoperability Resources

HL7 Health Level 7 – The International Standards Body for Pathology

ICD International Classification for Disease 

ICU Intensive Care Unit 

ML Machine Learning

MRI Magnetic Resonance Imaging 

NLP Natural Language Processing

PET Positron Emission Tomography

QIMR Queensland Institute for Medical Research

SaMD Software as a medical device

SMART FHIR Connected App Platform

SNOMED CT Systematised Nomenclature of Medicine – Clinical Terms

SPECT Single-photon emission computed tomography

Acronyms
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